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We consider the stationary Navier-Stokes equations in the case where both 

the partial  differential  equations and boundary conditions are inhomogeneous. 

Under certain conditions on the data, we prove the existence and uniqueness of: 

the solution o f  a weak formulation o f  the equations. Next, a conforming mixed 

f i n i t e  element method i s  presented and optimal estimates for the error of the 

approximate solution are provided. In a d d i t i o n  , the convergence properties of 

i t e r a t ive  methods fo r  the solution of the discrete nonlinear algebraic systems 

resulting from the f in i t e  element algorithm are analyzed. Numerical examples, 
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1. INTRODUCTION 

The Navier-Stokes equations, which describe the motions o f  viscous 

incompressible f l u i d s ,  have been the object of considerable research. 

studies have been directed a t  improving our understanding o f  various properties 

of the solutions of these equations, e.g. existence, uniqueness and regularity. 

Most of the available mathematical results concerning such properties are 

collected i n  111, [ZI, C37 and [41. 

mate solution of the Navier-Stokes equations. 

generating'such approximations have, especially i n  recent years, received much 

attention, both from theoretical and computational viewpoints. See, e.g. C31, 

Some 

Other studies have considered the approxi- 

Finite element methods for 

C4L C5l and MI. 
The analysis of f i n i t e  element methods for  the approximate solution of the 

stationary Navier-Stokes equations may be viewed as having  three components. 

The f i r s t  consists of assuming that  the f in i t e  element subspaces sa t i s fy  certain 

s t ab i l i t y  and continuity conditions, from which one then deduces estimates fo r  

the deviation o f  the approximate solution from the true solution. The second 

component then requires us to  show that  particular f inite element subspaces, o r  

classes of subspaces, sa t i s fy  the assumed s t a b i l i t y  and  continui ty conditions. 

The final component t h e n  requires one t o  study the computational efficiency of 

implementations o f  given f i n i t e  element methods, i n  particular as  they relate  to 

the solution of the discrete s e t  of nonlinear equations. 

concerned mainly w i t h  the f irst  component and somewhat w i t h  the t h i r d .  As w i l l  

be seen below, the only conditions which need t o  be verified f o r  a given f ini te  

In this work we are 

e - . element discretization involve the weak form of the continuity equation. Fortu- 

nately, these conditions are identical to  those which a r i se  i n  the context of 

the l inear  Stokes equations and, for many different f i n i t e  element subspaces, 

have been successfully analyzed. See, e.g. [51, C71, C87, C91, [lo], [ l l ]  and . 
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[12]. In particular, we p o i n t  out that  [lo] and [121 consider elements 

which, i n  conjunction w i t h  the error  estimates derived below, y i e ld  optimally 

accurate velocities and pressures, and which a l so  deal with the very e f f ic ien t  

element used to  generate the example computations given i n  this work. 

In this work we consider conforming mixed f i n i t e  element methods for  the 

approximate solution of the inhomogeneous stationary Navier-Stokes equations 

i n  bounded regions in IR2 o r  IR . These equations are given by (2.1)-(2.3) 

bel ow. We approximate only when the Navier-Stokes equations possess a un ique  

solution. By inhomogeneous we mean that the momentum equation (2.1) contains 

a body force, that  the boundary condition (2.3) is  inhomogeneous and tha t  the 

continuity equation (2.2)  contains a source term. 

cluded i n  previous analyses and for internal flows, i.e. flows i n  bounded regions, 

is often assumed t o  vanish or,  a t  most, to  be the constant gravitational 

acceleration. The second of these, namely the inhomogeneous boundary condition, 

is  crucial i n  internal flows since they are invariably driven by such conditions. 

T h i s  is true bo th  for f ic t i t ious ,  b u t  popular, flows such as the dr iven cavity, 

as well as  for  real internal flows such as those found i n  ducts which are driven 

by inflows and outflows. The analysis of such flows is the main concern of this 

paper. The inhomogeneity i n  the continuity equation (2.2) requires some comment 

since, s t r i c t l y  speaking, one cannot have mass sources i n  incompressible flow. 

Indeed, the presence of such a source contradicts the very definit ion of an i n -  

compressible flow. We include this  inhomogeneity here because, i n  practice, i t  

i s  often used i n  spite of the above inconsistency, e.5. [37 i n  the context of 

Stokes flow, because i t  i s  often a r t i f i c i a l l y  introduced. when simplifying 

boundary conditions, and because i t  poses no substantial mathematical d i f f icu l ty .  

3 

The f i r s t  of these is i n -  

In typical problems,.one may be interested i n  the flow f ie ld  itself or ,  

on the other hand,  some functional of  the velocity or pressure. For example, i n  



ocean circulation problems, one is mainly interested i n  the flow f i e ld  i tsel f ,  

and t h u s  the - L -norm i s  a physically interesting norm i n  which t o  measure 2 

the velocity errors.  I n  other applications, e.g. aerodynamics 

one may be interested i n  the pressure or i n  the derivatives of 

these determine the pressure and viscous fcrces , respectively, 
1 walls. In these cases, the - H -norm o f  the velocity error  and 

and duct flows, 

the velocity since 

on bodies or 
2 the  L -nom 

of the pressure error  are of physical interest. 

defined below.) We choose not t o  use the "eyeball norm" wherein computational 

resul ts  on-a fixed g r i d  are  plotted and the reader i s  subsequently asked t o  

agree tha t  the resulting picture is  'Ireasonable". T h i s  process can and often 

is very misleading i n  the sense t h a t  "reasonable" pictures can contain large 

errors  i n  norms such as the L2 and H -norms. 

easy to generate solutions to  the driven cavity problem which display global 

vortical features t h a t  render any picture of the computed flow as being 

"reasonable" i n  appearance, while the computed solution i t s e l f  may be grossly 

inaccurate i n  any precise measure o f  the  error.  

(These and other notations are 

1 For example, i t  i s  relatively 

In the remainder of t h i s  section we es t ab l i sh  the notation used i n  the 

subsequent sections. 

solution of a particular weak formulation of the stationary Navier-Stokes 

equations. We give detai ls  only when the result  i s  a substantial departure, 

usually due t o  the inhomogeneous boundary condition, from known results.  

Section 3,  we present a finite element algorithm for  the approximate solution 

of our weak problem and present estimates for  the error .  We also discuss 

various algorithms for  solving the discrete system o f  algebraic equations which 

resu l t  from the application o f  the f in i te  element algori thm. 

4 ,  we give some numerical. resul ts ,  mainly w i t h  the goal o f  i l l u s t r a t ing  the 

In Section 2, we present results concerning the exact 

In 

- 
Finally, i n  Section 

8 

analytical results of Section 3. 
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1.1 - Notation 

Throughout  this work R will denote a bounded domain i n  IR2 o r  R 3 

w i t h  a Lipschitz continuous boundary r .  The u n i t  outer normal t o  n will 

be denoted by - n. Hr(n), for r 2 0 an integer, denotes the Sobolev space 

of real valued functions w i t h  square integrable derivatives of order up t o  

r ,  equipped w i t h  the usual norm. See [131. We will denote Ho(n) by L2(n). 

- Hr(n) and - L (n) will denote the spaces of vector valued functions each of 2 

whose n components, n = 2 o r  3, belongs to  Hr(n) and L 2 (n), respectively. 

We also define, i n  the usual manner, the Sobolev spaces "(R) fo r  r <  0 

and the trace spaces HS(r) of functions defined on the boundary. Again, see 

[13] fo r  detai ls .  Finally, we define the constrained spaces 

1 1 H (Q) 5 i l  E (n): - v = 0 on r) 
-0 

2 2 Thus  Lo(n) consists o f  L (n) functions with zero mean over n. 

We define the L2 inner products 

and 
\ 
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Here f and g are scalar functions, u and v are  vector valued 

functions and u and T are tensor functions. The colon will denote the 

scalar product of the two tensors on each side of i t .  

unless otherwise noted, imply sumnation over 1 ,. . . , n ,  where n = 2 o r  3 .  
1 

- - 

Repeated indices, 

For functions - v E s(Q). we w i l l  use the norm 

llvll, = - I vv: - V V d Q  - = <vv, VI> 
52 

1 while for  functions - -  v E H (Q), we will use the norm 

We use the same notation for  both ,norm; which one i s  actually being used i n  

a particular si tuation will be clear  from the context. 

Boundary norms will be denoted by, e.g. 1 1 , 2 y r .  Whenever the r 

is  omitted, the norm is one for  functions defined over R .  

2. THE INHOMOGENEOUS STATIONARY NAVIER-STOKES EQUATIONS 

2.1 - Reduction to  a Homogeneous Problem 

T h e  Navier-Stokes equations for  the velocity 1 and pressure p are  

gi ven by 

-v@ + u-grad - u + grad p = - f i , n  n 

d i v  u = g i n  R - 

- u = g  on r 
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where v is the constant inverse Reynolds number and f E H-l(n),  CJ E L0(n) 2 
I 

- _  
and 9 E a re  g iven  functions such t h a t  - 

(2.4) 

The weak formulation of (2.1)-(2.4) which  we consider  is  t o  seek u E H 1 (n) 

such t h a t  (2.3) is  s a t i s f i e d  and 

- -  
and p E Lo(n) 2 

_ _  
where 

a (u,v)  v grad u :grad v d  R - 7 J  1 ‘  gg*!dQ, - I -  n 
o -- 

n 

and 

(2.7)  

ble note  t h a t  a l t h o u g h  the test funct ion J, i n  (2 .6)  i s  i n  Lo(n), 2 (2.6) 
. a c t u a l l y  holds f o r  a l l  funct ions J, E L 2 (n) because of (2.4).  

The motivation f o r  choosing the p a r t i c u l a r  weak formulation (2.5) i s  

twofold. First, we note ‘ tha t  i f  (2.2) holds ,  t h e n  by the divergence theorem 

we have, for u E H 1 (n) and v E HJn), 7 t h a t  (2.5) i s  equivalent t o  - - -  
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4 

T h i s  is the weak form of (2 .1)  one would arrive a t  f r o m  a standard Galerkin 
procedure applied t o  (2.1). 

l inear  form a l ( -  ,e) sa t i s f ies  the skew-symmetric properties 

Second, i t  i s  obvious from (2.8) that  the tri- 
m 

On the other hand, the t r i l i nea r  form 

V u , w  E H 1 (n). - -  - 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

appearing i n  (2.10) sa t i s f ies  (2 : l l ) . and  (2.12) only when - - -  u , v , w  E H 1 (n) 

w i t h  w divergence free and a t  least  one of s,v,w E % ( a ) .  1 Indeed, for  such - 
- u,1,w we have, from (2.8) and (2.13) 

'The fac t  t h a t  the properties (2.11) and (2.12)  hold for the t r i l i n e a r  form 

(2.8) on a l l  of H'(n) will be useful in the subsequent analyses. - 

We w i s h  t o  reduce the problem (2.3),  (2.5) and (2.6)  i n t o  one fo r  which 

(2.3) and (2.6) become homogeneous. To this end we write 

- - -  u = w + z t g* (2.15) 



where g* sa t i s f ies  

and - w sa t i s f ies  

a 

(2.16) 

(2.17) 

In the sequel, 9* will be required t o  sat isfy an additional property, 

which we consider below. 

I f  we substitute (2.15) i n t o  ( 2 . 3 ) ,  (2.5) and (2.6) and use (2.16) and 

(2.17), we are led to  the following problem for z and p: seek z E % ( a )  1 - - 
n 

and p E LG(n) such that 

We remark that  the decomposition (2.15) need not be expl ic i t ly  used i n  

computations, b u t  rather and p can be obtained directly from discreti-  

zations of (2.3), (2.5) and (2.6). 

functions - w and 9* need n o t  be explicit ly computed. 

In particular, approximations t o  the 

2.2 - Continuity and Stabil i ty Properties 

We now l i s t  the continuity and s tab i l i ty  conditions on the forms ao(*l-)l 
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a , (= , -  ,=) and b( -  ,a) which will be needed to prove the existence and 

uniqueness of a solution t o  (2.3),  (2.5) and (2.6). W2 define the subspaces 

Z and W by - - 

4 

and 

and 

where the. orthogonality is i n  t&(n). 1 

I t  i s  easily seen that 

Here n = 2 o r  3 refers to the number o f  space dimensions. We 'note t h a t  

(2.20) implies t h a t  - Z i s  a closed subspace of  %(n) 1 and t h u s  %(SI) 1 = - -  Z @ W .  

In addition we need the s tab i l i ty  properties 

where y,; > 0. These properties are established in [141. 

From (2.8) and (2.13) we have t h a t  

(2.21) 

(2.22) 



a+w,u,v) = 7 1 qw,!,x) - ii (w,V,u)>. 
1 --- 

It i s  known [41 tha t ,  w i t h  N > 0 and n = 2 o r  3, 

IS1 (w,u4!) I L NI lul I1 I I l l  I1 I Iwl I1 w g,v,w E 1 (Q) . 

Therefore, from (2.23), we have t h a t  

Using Holder 's ,nequali ty, we have t h a t  . 

10 

(2.23) 

(2.24) 

Since f o r  n = 2 or 3 and R bounded, H 1 (n) i s  continuous7y imbedded i n  
L4, (2.25) imp l i es  t h a t  f o r  a l l  - -  u,v E - H 1 (n) and g E Lo(n), 2 

g u j  vi E L 1 (n) 

where there i s  no sum over i . There 'ore, f o r  some M 0, 
I 
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It i s  e a s i l y  establ ished t h a t  

.n 

and 

8 

Combining these wi th (2.7) and (2.26) e a s i l y  leads t o  

The c o n t i n u i t y  and s t a b i l i t y  propert ies which w i l l  be used i n  the sequel 

are given by (2.20), (2.21), (2.221, (2.241, (2.27) and (2.28). 

2.3 - Existence, Uniqueness and Regular i ty 

We f i r s t  es tab l i sh  t h e s x i s t e n c e  of a s o l u t i o n  o f  t he  prob.Jem (2.3), 

(2.5) and (2.6). We s h a l l  do so by showing the existence o f  so lu t ions s, 
- w o f  (2.16), (2.17), respect ive ly ,  and then showing the existence o f  a 

s o l u t i o n  ( ~ , p )  o f  the  problem (?.18), (2.19). Then, by (2.15), we w i l l  

have shown the existence o f  a so lut ion (u,p) of (2.3), (2.5) and (2.6). 

LEMMA 2.1 - Given 9 E H’”(r) m t i ~ ~ y i n g  (2.41, Zhetrs exih2 9* ~ a 6 y i n g  

- 

. *  

- 
., (2..76) . Motreovetr, do& any E > 0, Xhe4e exit& a pahLicutan 9* 

AatiAbying ( 2 . 7 6 )  and 

c 



W Z E Z .  la1 (ZY%4I f E l  Irl I, - -  

Proof: The  exis tence of a g* s a t i s f y i n g  (2.16)  and 

2 I (L,g*Yr) I f E l  1.1 I l  

is e s t ab l i shed  i n  [ l l  o r  [31. Therefore,  by (2 .14 ) ,  the inequa l i ty  (2.29) 

72 

(2 .29)  

is  a l s o  es tab l i shed .  a 

2 LEMMA 2.2 - Given g E Lo(Q), Rhehe e u h d  a unique w E scc.tinbying 1 2 . 1 7 )  - 
and ~ e .  emXmate 

(2.30) 

Proof: The  b i l i nea r  form b ( * , - )  s a t i s f i e s  the cont inui ty  and s t a b i l i t y  con- 

d i t i o n s  (2.20)-(2.22) on - W x Lo(Q) and <g,$> i s  a bounded l i n e a r  func t iona l  
2 on Lo( n) . Therefore, the result fol1 ows from Babuzka’s general i za t ion  o f  the 

Lax-Mi 1 gram theorem [ 1 5). 

2 

I 

(2.31) 

and 



and 

(2.33) 

, 
Proof: We set v = 5 E Z i n  (2.18). Then, since b(5,p) = 0 fo r  5 E L, 
we have 

- - - - -  

where 

and 

Now, from (2.19), we see t h a t  z E Z. To show the existence of a solution 

- z t o  (2.34) we need only show that  (see [3] or  [4]) there ex is t s  6 > 0 

- -  

such t h a t  

. .  
and that  if converges 

V 

(2.34) 

(2.35) 

(2.36) 

i 

(2.37) 

(2.38) 
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and f i n a l l y  t h a t  h ( c )  - is a ,bounded 

l e t t i n g  - _  5 = z i n  (2.35) yields,  us 

l i n e a r  funct ional  on Z. Now, 

ng (2-12) ,  

- 

Then,  using (2.24),  (2.28) and (2.29), 

(2.39) 

Therefore,  since E > 0 is a r b i t r a r y ,  (2.37) holds w i t h  B given by (2.31) .  

Note t h a t  €3 > 0 r e q u i r e s , t h a t  u be " s u f f i c i e n t l y  la rge"  o r  g " s u f f i c i e n t l y  

small".  To prove (2.381, we note t h a t  the term al ( ~ , ~ & )  equals  il (Z,L,g) 
s ince  z,c E Z C s ( n ) .  1 The convergence of a,(%,%&) t o  :,(z,z,C) was --- - -  - 
es t ab l i shed  i n  [3] or [41. The remaining terms i n  (2 .34) ,  i .e .  

c o n s t i t u t e ,  by (2.24),  (2.28) and (2.30) a continuous b i l i n e a r  form on Z x I .  
T h u s ,  (2.38) follows. F ina l ly ,  we have from (2.24), (2.28) and (2.36), 

- 

so t h a t  h(5) is a bounded l i n e a r  funct ional  on - Z. Thus the problem (2 .34)  - 
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has a solution Z E  I satisfying (2.32).  

Now, set - - -  v = w E W i n  (2.18). We then have,  by (2.15), 

(2 .40 )  

b 

Since I l u l l ,  - 2 IIwlt, + llzlIl + IIg*lIl and - -  f E H - ’ ( Q ) ,  the r i g h t  hand 

side i s ,  by (2 .24 ) ,  (2 .28) ,  Lemnata 2.1 and 2 . 2 ,  and ( 2 . 3 2 ) ,  a bounded 

l inear  functional on W .  Then,  since the bil inear form b ( - , - )  sa t i s f ies  

(2 .20) - (2 .22) ,  we have that  a p exists satisfying (2 .40)  and the estimate 

(2.33).  

- 

and 

(2 .42)  
Y 

Proof: The results follow from Lemnata 2.1-2.3. 

v 
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We remark t h a t  i f  g = O9 then B = v and B > 0 t r i v i a l l y . -  For 

g # 0 ,  (2.31) requires t h a t  v be s u f f i c i e n t l y  la rge  compared t o  1/91 1,. 

shown d i r e c t l y  from ( 2 . 3 ) ,  (2 .5 )  and ( 2 . 6 ) .  

The uniqueness o f  the so lu t ion  u E H 1 (52) and p E L2(n) will be 
0 - -  , 

THEOREM 2 . 5  - Given f E H-’(Q),  g E Lo(Q) 2 and q E H”2(r) dudt -&at - -  - -  
( 2 . 4 )  and 

Proof: Let ( q , p l )  and ( ~ ~ , p ~ )  be two so lu t ions  i n  H 1 (n) X’ Lo(n) 2 

( 2 . 3 ) ,  (2 .5 )  and (2 .6) ,  t h a t  U E %(n) 1 

of - 
(2 .31 ,  ( 2 . 5 )  and (2.6). I f  = q - g2 and P = p1 - p 2 ,  we have, from 

and - 

. Choosing JI = P i n  (2.45) and v = U E ~ Q Q )  1 i n  (2 .44 )  y i e l d s  - a -  

f 

ao(c,u) .+ a l  (&y + al (g2,!,!) = 0. 

(2.43) 

( 2 . 4 4 )  

I 
(2 .45)  I 

I 

8 
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Then, by (2.12), we have 

I 

so t h a t  by (2.24) and (2.27),  

T h u s ,  u s i n g  (2.41), i f  (2.43) holds, U = 0. 

NOW, w i t h  - U = 0 and g1 = g2, (2.44) becomes 

- 

and, i n  particular,  since W C % ( Q ) ,  1 - 

b(w,P) = 0 

Then (2.22) implies t h a t  P = 0. 

W w E W .  - -  

I 

We note t h a t  i f  g = 0 and 9 = 0,  then (2.43) reduces t o  the well 

known uniqueness condition v2 - N I  I f 1  I - ,  > 0. Moreover, f o r  existence we 

needed 8 > 0, while for uniqueness, 5 > 0 was required. Comparing (2.31) 

and (2.43), we see that  B > 5 ,  so that 5 > 0 implies 8 > 0 ,  b u t  not 

conversely. 

. The condition for uniqueness, (2.43), requires t h a t  f ,  g,  and 9 be - 
"sufficiently small". On the other hand, the condition for  existence, (2.31) , 
requires only that  g tie "sufficiently small". I f  one i s  w i l l i n g  t o  accept 

"small" 9, as  one must to  prove uniqueness, then the existence proof can be 

* 

_. . .  . . , . .  . I  

.. - . . 
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s impl i f ied .  Moreover, i t  can he modified so t h a t  CJ* need not  be- divergence 

free and therefore  g need not  have zero mean. Furthermore, g* need no t  

s a t i s f y  (2.29). Indeed, we r ep lace . (2 .4 ) ,  (2.6) and (2.17)  by 

respec t ive ly .  We replace Lema 2.1 by the f a c t  t h a t ,  since CJ, E - H1’*(r), 
1 there exists a g* E I! (9) such t h a t  p* 

Through the use o f  (2.24) and (2.49),  we replace 

2 
al(L’9*9I) L NI Is*l I1 I Irl I f  L NKI Irl I1 

(2.46) 

(2 .47)  

(2.48) 

(2.49) 

2.29) by 

Lemnata 2.2 and 2.3 a r e  replaced by analogous results, which a r e  proven i n  

much the same way as the lemnata they replace.  We again n o t e  t h a t  whenever 

(2.29) was needed above, i t  is  replaced by (2.50). Then theorems analogous 

- . t o  Theorems 2.4 and 2.5 follow. 

rep lace  Lemma 2.2 and Theorems 2.4 and 2.5. 

Here we simply l i s t  the r e s u l t s  which 

(2.50) 

2 1 LEMMA 2.6 - Given g E L (n) and 4* E H (Q) a a t i n & j h g  ( 2 . 4 6 )  and ( 2 . 4 7 1 ,  
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b 

..., THEOREM 2.7 - Given - -  f E H-l(Q)y g E L 2 ( 0 )  and 9 E H’/‘(I’) ~ u c h  2hu.Z 

( 2 . 4 6 )  and 

wherre 

(2.52) 

(2.54) 

2 . 4 2 ) .  

THEOREM 2.8 - Given f E H-’(Q)¶ g E L 2 ( a )  m d  9 E H’ j2(r)  nu& &a;t 
- - -  

.* ( 2 . 4 6 )  and 
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We remark that i f  9* is chosen t o  be divergence free,  which i s  always 

possible i f  g has zero mean over n, then a l l  the terms i n  (2.51)-(2.55) 

i nvol  vi ng 

(2.55) 

can be omitted. 

fo r  "sufficiently small" g and - q and from (2.55) that  uniqueness i s  proven 

for  "sufficiently small" L, g and 9. I t  i s  also easily shown that unique- 

ness implies existence, i . e .  tha t  ; > 0 implies ; > 0. 

Further, i t  is  clear from (2.52) t h a t  existence is  proven 

The regularity results f o r  the solution o f  the stationary Navier-Stokes 

equations proven i n ,  e.g. [ l ]  or  [31, are independent of the particular weak 

form of the equations, and t h u s  carry oyer t o  our setting. 

3.  MIXED FINITE ELEMENT APPROXIMATIONS 

3.1 - The Approximate Problem 

We wish t o  define a problem which will yield approximate so lu t ions  of 

(2.3)-(2.6). To t h i s  end we choose subspaces - V h  C - H 1 ( Q )  and So C Lo(Q). 

We t h e n  seek a - u E - V . and p E So such that  

h 2  

h h  h h  



P,Q) + h v x  E 
1 h 
-0 

tl *h E s; 

on r ( 3 . 3 )  
h h  u = 9  

h h 1  where % = - V n %(n) and gh is an approximation t o  9 on r .  Since 

we are assuming that gh i s  i n  the restriction of - Vh to the boundary r ,  

the results below will hold for  polygonal domains. However, through the use 

of isoparametric elements, i t  i s  reasonable t o  expect t h a t  these results can 

be extended to  regions w i t h  curved boundaries. Possible choices for  gh are 

the interpolant o f  9 i n  the restriction of V h  t o  r or  the L 2 (r)-projection 
of 9 into tha t  boundary space. The f i r s t  choice requires tha t  9 E H 1/2+E 

- - 

(r ) _ .  

for some E > 0, while for  the l a t t e r  choice CJ E H’/*(r) suffices.  

In analogy w i t h  (2.15), we write 

h h h  - U h  = - w + ‘ I  + g* 

h h  h is a function such tha t  9* = CJ on r and where - w 

sa t i s f i e s  

(3 .4)  

We only consider the case where the continuous problem has a un ique  solution. 

T h u s ,  as i n  t h a t  case, we do not need to require 
. 
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I 

A v a r i e t y  o f  f i n i t e  element spaces f o r  which (3.6) and (3.7) hold, w i t h  Yh 

and j h  bounded below un i fo rm ly  i n  h, have been analyzed i n ,  e.g. [43, [gl, 
I 
I [lo],  [ l l ]  and [121. 
~ 

We note tha t ,  i n  general, L h d: Z. A measure o f  t he  angle between the - 
spaces Z h and Z i s  given by - - 

i n  order  t o  prove the existence o f  a s o l u t i o n  t o  (3.1)-(3.3). 

more, we w i l l  not  need t o  requ i re  t h a t  g* h s a t i s f y  a r e s u l t  analogous 

t o  Lemma 2.1. 

Further-  

The coe rc i v i t y  and c o n t i n u i t y  condi t ions (2.20), (2.24), (2.27) and 

However, the condi t ions (2.21) and (2.22) (2.28) ho ld  on the subspaces. 

do n o t  imply t h a t  s i m i l a r  condi t ions ho ld  on the subspaces. 

d e f  i ning  

Therefore, 

and 

- 
we assume that,  f o r  YhyYh > 0, 

and 

(3.6) 

h h  w sw - -  

c 



. 
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(3.8) 

In  general, 0 < o < 1,  which is easily seen by observing t h a t  for 

o = 0, and that  by choosing z = 0, o = 1.  

Z h C Z ,  - - - -  

- 
We are now i n  a position t o  prove uniqueness and existence theorems fo r  

the approximate solut ion - u h ,  ph analogous t o  Theorems 2.7 and 2.8 for  the 

continuous problem. 

THEOREM 3.1 -  give^ f E H - l ( Q ) ,  g E L2( f i )  and g* h E lh bU& &at CJ* h h  = 9 - 
on r and 

and 

(3.10) 

(3.11) 

(3.12) 
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c 

E h ' B  - -  h 
'h 

(3.13) 

h h  me u t i ~ b i e d ,  ;thehe exin& at moht one h o m o n  u E - V - 
h h  and p E so 06 (3.71-(3.3). 

The proofs o f  these theorems proceed as i n  the continuous case w i t h  the 

exception t h a t  i n  the proof  o f  the r e s u l t  analogous t o  Lemma 2.3, we need 

no t  pass t o  the l i m i t  m + ~ ,  i .e.  we need n o t  prove (2.38). 
h I f  CJ* i s  chosen t o  be "d i sc re te l y  divergence free",  i .e .  i f  

then a l l  terms i n v o l v i n g  fi i n  (3.9), (3.10) and (3.12) may be omitted. 

On the o the r  hand, i f  CJ* i s  chosen t o  be the i n te rpo lan t ,  i n  - V , o f  s, 
and 4* i s  chosen t o  s a t i s f y  (2.49), then for  c e r t a i n  classes o f  f i n i t e  

element spaces 

h h 

h so t h a t  i f  9 i s  "small", so w i l l  be g*. Furthermore, i f  4 i s  smoother 

on the boundary, as it w i l l  have t o  be i n  order  t o  ob ta in  any degree o f  

approximation, we have t h a t  the above i n e q u a l i t y  holds f o r  a general f i n i t e  

element space Vh, so that  again, q "smal l"  imp l i es  "c& small. - - 

I n  p rac t i ce ,  we compute d i r e c t l y  w i t h  (3.1)-(3.3) so t h a t  we do n o t  
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need t o  e x p l i c i t l y  const ruct  

i s  def ined on r .  
o r  CJ*. However, we do need $? which 

3.2 - The H 1 Veloc i ty  and L 2 Pressure Error Estimates - 
~~ 

h We def ine  the s e t  ih by - 

The main goal of t h i s  paper i s  the fo l lowing r e s u l t .  

h h  THEOREM 3.3 - Let (2.551 and (3 .131  b e  acctindied b o  ,that (g,p) aHd (1 ,p ) 

denaxk &e u&pe boh,?iortl 06 ( 2 . 3 1 ,  ( 2 . 5 1  und ( 2 . 6 )  and ( 3 . 1 ) -  

( 3 . 3 1 ,  t u n p e c t i v d y .  Then,  &eke exin;t cov~Xta~lt6 

i = 1, ..., 4 ~ u c h  f i a R :  

- .  
Ci, 

and 

. 
. 

Proof: L e t  u and uh be w r i t t e n  as i n  (2.15) and (3.4), respec t ive ly ,  - - 

w 
h .  h h -h z E Z, z E L , = 9.. Then, where w E: E ,  w E E ,  - h ..h 

- -  - - -  

sub t rac t i ng  (3.2) from (2.6) w i t h  JI = $h E S: y i e l d s  
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h h  - h  Ah h where we have used b(z-z ,$ ) = 0. Now, l e t  ^uh = w + + where 

Gh E Wh and ^zh E Zh are a r b i t r a r y .  Then ^uh E ih and, s ince  

b(z-z ,J, ) = 0, we have from (3.17) 

- - - -  

- - - - - - 
Ah h 

Then, us ing  (2.20) and (3.6) , 
m 

where ^uh . i s  an a r b i t r a r y  element o f  V ̂h  . 
- - 

We now est imate I l z  h -g Ah Ill. Subt rac t ing  (3.1) from (2.5) w i t h  
- 

h v = v E y i e l d s  - -  

26 

(3.17) 

(3.18) 

h h  h h  h h  h h  h h h  ao(u-u ,v + al(z ,!-! ,v ) + al(g-y ,g,v ) + b(v  - ,p-p ) = 0 W - v E $ (3.19) 

or,  wi th uh a r b i t r a r y  i n  ih and fPh a r b i t r a r y  i n  so, h - - 

a o ( g  -2 ,v + al(g h A h  ,u -g h ,I h ) + al(u Ah -u h ,u,v h ) + b ( 1  h ,p  Ah -p h ) 
Ah h h 

- - - -  

- Ah h h Ah h Ah h h Ah - ao(g  -u,v + al(g ,u -g,i + a,(g - ~ , g , ~  ) + b(v  , p  - p )  

(3.20) h h  w v  - E$. 

h A h h  h h Now choose - v = - -  z -z E 1 C & .  Then, w i t h  - 5 a r b i t r a r y  i n  I ,  
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h h - h  h 
b ( i  -z ,p  -P = 0 and 

Combining t h i s  r e s u l t  w i t h  (3.20) produces 
L 

Ah h Ah h Ah h Ah h h - h  h h h a o ( i  -I ,L -1 + a, ( L  -z ,g,z - z  ) + al (u - - - _ _  ,z -z ,i- -Z ) - 

- Ah h Ah Ah h - h  h Ah Ah h -- ao(g -!+E -E ,L -L ) + al(u - -u+w -- -w - ,U,Z - -  - Z  - ) 

+ al(u h ,u Ah -us! h -w Ah ,z -h  -z  h ) + b(z  Ah - z  h -5,p Ah -p) - - _  - - -  - - -  

- zh. Using (2.12), (2.20), (2.24), (2.27) s ince u - u = w - w + ;h 

and (2.28) we ob ta in  

-h  h Ah h - - - - - . -  

. 

Since 

us ing (3.18), 

> 0 from (2.55), we have, by tak ing  t h e  infimum over L E Z and - 

Then, s ince  
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we have t h a t  

+ 4i 0 l l P - i h l l o  1 

Now, s ince 

h Ah Ah h Ilu-u 1112 112-U Ill + I l l - i !  

we have, us ing  (3.18) and (3.21) and tak ing  the infimum over bh E S: and 

- Gh E - ih t h a t  (3.15) holds. Moreover, using (2.53) and (3.10) y i e l d s  t h a t  

and 

We now estimate the e r r o r  o f  the pressure approximation. 

~ . we have t h a t  

a 

(3.21) 

From (3.19) 
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h h  where bh i s  arbitrary i n  So.  h 

(2.201, (2.24) and (2.28), 

Letting vh = w E W , we have, using - - - 

or ,  taking the supremum over w h E W h  and using (3.7), - -  

Then, u s i n g  the triangle inequality, (2.53), (3.10) and (3.15), and taking 

the infimum over bh E S:, yield that (3.16) holds w i t h  . 

and 

c 4 =  1 +;- 

The condition needed to prove the uniqueness o f  u ,  i .e. 5 > 0, was also 

needed i n  the proof of the error  estimates. Also, note t h a t  i f  Vh i s  chosen 

so t h a t  z C 

from the pressure error,  i . e .  (3.15) i s  replaced by 

- 

- 
h h h  , so that  0 = fl, then the velocity error I I -- u-u 1 I uncouples - 

. 
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In addition, we note t h a t  i f  & and g* h are chosen t o  be divergence and 

discretely divergence fkee, respectively, i .e .  

from the definitions of Ci , i = 

I t  i s  easily seen, by examin 

as i + 0, these constants become 

then the terms involving hi 1191 l l / 2 , r  and 6 I [%I 1, may be omitted 

y . .  . ,4. 

ng the constants C i ,  i = 1, ' . ,4,  tha t  

a rb i t ra r i ly  large. Examining 5 ,  which  
A 

is  defined by ( 2 . 5 5 ) ,  i t  is easily shown t h a t ,  as a function of v, 

where K i ,  i = 1,...,3, are non-negative constants independent'of v .  Then, 

s i  nce 

A 

K3+K1 K2 
2 > 0, - -  d S - 1 +  

(v-K1) dv 

we see t h a t  i decreases w i t h  v .  Note t h a t  fo r  

We recall that  for small i ,  Ci = O(l/i). 

o f  v for  which 5 = 0, i t  can be shown t h a t ,  for v > v* 

> 0 ,  we must have v > K1. 

If v* denotes the c r i t i ca l  value 
A 

C i  = O(-) 1 as v -, v*, v-v* 

i .e.  the constants i n  the error estimates blow u p  algebraically as v approaches 

the c r i t i ca l  value v*. . In  particular,  i t  i s  important to  note that  the Cj's 

do n o t  blow up exponentially in l / (v -v* ) ,  and, on the other hand ,  they do n o t  

~ - _ _  



31 

blow up as l/(v-v*) 'I2 either.  

3.3  - I terat ive Methods f o r  the Discrete Equations 

In t h i s  section we examine three i te ra t ive  methods for  the solution o f  

the discrete  equations ( 3 . 1 ) - ( 3 . 3 ) .  

especially C51. Throughout  th i s  section we will denote by ( u  h h  ,p  ) the 

Here we follow closely C41 and 

- 
exact solution of the discrete equations, and by { u . , p . ) ,  j = 0,1,2,..., 

-J J 
the sequence of approximations t o  ( u  h h  ,p ) defined by the i t e r a t ive  method. - 

We first  consider Newton's method. Given u such t h a t  

such 
-0 

the sequence € u .  p.1, j > 1 ,  i s  defined by: seek u .  E ^ h  V , p j  E So 

t h a t  
- 

-J' J -J - 

(3 .22 )  

Note tha t  we require % to sa t i s fy  the boundary conditions, b u t  we do not 

require t h a t  

( 3 . 2 4 )  h h h h  b(%YtJ ) = -<!w > w tJ E So' 

. Furthermore, no i n i t i a l  pressure po i s  required. The following ser ies  o f  

propositions shows t h a t  i f  u+, i s  sufficiently close t o  g h then the 

i te ra tes  Iu.,p.l 

. i terates  converge quadratically t o  

. -  

are uniquely defined by (3 .22 )  and ( 3 . 2 3 ) ,  and t h a t  these 
-J J 

(u h h  ,p ). - 
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Proof: We show t h a t  the results are true for j when they are true fo r  j -1 .  

By hypothesis, they are true for j = 0. To show t h a t  [u. p . )  i s  uniquely 

defined, we need only show that  the f i n i t e  dimensional system (3.22) and (3.23) 

possesses only t h e  t r ivial  solution when the r i g h t  hand sides vanish, i . e .  
h h t h a t  the problem of f ind ing  u E & and 6 E So such t h a t  

- 
-J' J 

- 

or  



or, comparing w i t h  (3.1 3) , 
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But, by hypothesis, I lg -gj-l I I 5 ;h/ZN, so t h a t  

and, s ince we are assuming t h a t  i h  > 0, i .e .  t h a t  the d i s c r e t e  s o l u t i o n  
h h  (u ,p ) i s  uniquely determined, we have = 0. NOW, w i t h  6 = 0, (3.25) 

y i e l d s  

- - - 

b ( v  ’ h -  ,p) = 0 W v h h  E $ - 

h h  and, i n  pa r t i cu la r ,  f o r  a l l  - w E - W . Then, using (3.7), we e a s i l y  have 

t h a t  = 0. 
h 

I l u . - u  1 1  - e d .  Subtract ing (3.1) from (3.22) and We now show t h a t  
-J 

(3.2) from (3.23) 

(3.28) h h  h h  
* .  b (g j -c  ,$, ) = 0 W 1~ E S o .  

h h h - h  
-J - -0 J 0 

* L e t t i n g  vh = u.-u E vh and $.. = p.-p- E s.. i n  (3.273 and (3.28), respec t ive ly ,  - 
and then combining y ie lds ,  us ing (2.12), 



B u t ,  by 

or, I I! 

( 3 . 3 0 )  

(3.29) 

(3 .31)  

* 

(3 .32)  
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I__ Proof: (3.30) and (3.31) fo l low from (3.29). Subtract ing (3.1) from (3.22) 

or, us ing  (3.31), 

h h  w w E W .  - .- 

We next  consider the  modified Newton, o r  chord method. Given % such 

seek u. E V ̂h 
-J J -J - = 9 h , the sequence { u . , p . l ,  j l  1, i s  def ined by: 

that 
P j  E So such t h a t  

(3.33) 
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(3.34) 

Once again we require only that  % sat isfy the boundary condition. We 

do not require an i n i t i a l  pressure po or for  % to sa t i s fy  (3.24). The 

advantage o f  this method, w i t h  respect t o  Newton's method or  the simple 

i te ra t ive  method scheme defined below, i s  t h a t  the l inear system t o  be solved 

a t  each i terat ion always involves the same coefficient matrix. On the other 

hand, the chord method is  only locally l inearly convergent. 

ent i re ly  analogous to  that  for Newton's method, we can prove the following 

result. 

In a manner 

and 

d/2 and 
I -  

Following the discussion a t  the end of Section 3.2, we note tha t  the 

- . at t ract ion balls for the Newton and chord methods, whose radii a re  proportional 

to $,Y vanish as w approaches v*. Indeed, then radii a re  O(w-w*) as w 

approaches v*. 

CI 

The final scheme we consider i s  the following simple i terat ion.  Suppose 

Y 

. 
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L. > 0 so t h a t  the so lu t ion  (u h h  ,p ) of  the d i s c r e t e  equat ions is uniquely - 

h 
'h 
defined. Then,  given E 1 , the sequence { u . , p . l ,  j > 1 ,  i s  defined by: 

seek u. E ^vh and p .  E So such t h a t  
- -J J 

h 
-J - J 

(3.35) 

(3.36) Muj,$ h 1 = -<w h '  > v J, h h  So' 

For this scheme, one can prove the following results. 

PROPOSITION 3.7 - Let i h  > 0 ho  RhaA .the h o r n o n  (1 h h  ,p 1. 06 $he cbchcte  

equdauu .iA uuziquelg de{ined.  Then, given E h , Zhe 

dequence I u  , p . ) ,  j 2 1 , unique& debined  by (3.351 and 

(3.36). Mouovelr, i d  CL h a c0~ikn. t  duch &a.t 
-j J 

Proof: 

s t a t i o n a r y  Navier-Stokes equations.  

because we have assumed t h a t  t h  = v-MI 191 Io-NI 11 I i 

The proof follows c lose ly  those o f  [41 and [51 f o r  t h e  homogeneous 

We only note  t h a t  necessar i ly  a < 1 
h 

rn . > 0. 

I. The simpie i t e r a t i v e  scheme (3.35) and (3.36) is  t h u s  l i n e a r l y  and g loba l ly  

convergent. I t  requires  the so lu t ion  of a different matrix problem f o r  each 
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i terat ion.  No in i t ia l  pressure po i s  needed, nor does the i n i t i a l  

velocity u+, need t o  sat isfy ( 3 . 2 4 )  o r  the boundary condition 

In particular,  we may s t a r t  w i t h  the i n i t i a l  condition u z 0. 
-0 

4. NUMERICAL EXAMPLES 

I n  this section we present three numerical examples 'which i l l u s t r a t e  

some of the theoretical results of the previous sections. Specifically,  we 

w i s h  to  i l l u s t r a t e  the estimates f o r  the errors i n  the approximate solution 

for  the velocity and the quadratic convergence of the Newton i te ra tes .  An 

extensive report o f  the numerous other computational results will be made 

elsewhere. The f i r s t  two examples are a r t i f i c i a l ,  i . e .  we define an exact 

solution and then ad jus t  the da ta  - f, g and 9 so that  the governing equations 

(2.1)-(2.3) are satisfied. The t h i r d  example i s  a physical flow, namely the 

plane flow i n  the neighborhood of  a stagnation point. 

the rFgion n 

For a l l  three examples 

i s  the u n i t  square CO < x < 1 ,  0 < y < 1 ) .  

The pair  of f in i te  element spaces which is used i n  the examples i s  defined 

as follows. We subdivide the region 51 i n t o  quadrilaterals and then divide 

each quadrilateral i n t o  two triangles by drawing a d i agona l .  

space - Vh we choose vector valued functions whose components a re  continuous 

piecewise l inear  functions over the ,ihiangLes. 

f i rs t  l e t  Sh consist of piecewise constant functions over the q u a d n a d e k d -  

We then constrain the functions i n  Sh t o  have zero mean over n. 

on a regular o r  graded g r i d ,  a second spurious singular mode m u s t  be eliminated 

from S , while on an irregular grid,  there i s  a spurious nonsingular rode 
h which must be eliminated. .See [lo] and [121 for de ta i l s .  Then the space So 

i n  which we seek the approximate pressure i s  the space Sh w i t h  the above two 

For the velocity 

For the pressure space, we 

In addition,, 

h 
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b 

constraints imposed. In actual computations, neither constraint  need be 

explicit ly imposed on Sh beforehand, but rather they are imposed Q p a b t e h i o ~  

on the computed pressure by a simple post processing procedure. 

element pair  t h u s  chosen has been shown to be stable,  i .e .  t ha t  (3.6) and (3.7) 

hold, on regular g r ids  [lo] and on general gr ids  [12]. Then, according t o  the 

The f i n i t e  

results o f  the 

where. h is a 

previous section, we expect that  if  E: 2 (n) and p E H 1 (n), 

measure of the grid s ize .  

For each example we divide the u n i t  square a into smaller squares of 

side h.  We report the,  I 2 ( a )  and E 1 (0) velocity errors on pairs of g r ids ,  

and for  each pair ,  the rate of convergence of the approximate solutions. 

rates a re  computed by comparing the errors on two grids .  Specifically,  we use 

These 

the f o m i a  

rate = l n ( E , / e 2 ) / l n ( h l / h 2 )  (4.2) 

where ci denotes the error  on the g r id  h i .  In addition, we give some 
1 examples reporting on the distance, -measured i n  the - H (n)-norm, between the 

l a s t  Newton i t e r a t e  and the preceeding Newton i te ra tes .  We note that  fo r  a l l  

the computations, we f i r s t  computed a few simple i te ra tes ,  usually two o r  three,  

’ before switching to  the Newton iteration. T h i s  enabled us to  s t a r t  the compu- 

. . tat ion w i t h  an arbitrary in i t i a l  velocity vector, e.g. the zero vector. 

For a l l  three examp1e.s the exact solution ( u , p )  - was known. The compu- 

tations were carriqd out.with the choice v = 1 w i t h  gh defined to be the 

in te rpobnt  of the exact solution g rest r ic ted t o  the boundary r of n. 
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h The norms of the error (u-u - -  ) were computed using high order quadrature 

rules . 
The f i r s t  example, for which f # 0 and g f 0 b u t  9 = 0, has the 

exact so lu t ion  

u =  - 

P =  

sin TX sin 2ry 

x (1 -x ) s in  ny 2 

2 cos nx(1 + y(y - 4 ) )  

and i 11 ustrates the eifec t s  o f  an i nhomogenei t y  i n  the conti n u i  ty  equation. 

The second example, for  which - f # 0, g # 0 and 9 # 0 ,  has the exact 

solution 

I AeXY cos A X  1 

p = C ( C 0 S  .rrx)(l-4y+y 3 1 

where B ,  C and r. are constants which were chosen t o  be . l ,  .1 and -1, 

respectively in . the  computations reported. A is  obtained from the expression 

which arises from enforcina ( 2 . 4 ) .  The third example is tha t  of plane flow i n  the 

neighborhood o f  a s t a g n a t i o n  point, i .e .  Heirnenz flow. 

defined for --oo < x < = and  y > 0 ,  has the exact solution [161 

T h i s  flow, which i s  



where TI = y / 6  and $ ( n )  i s  the sol 
CL 

i t i o n  of  the bound ry value  problem 

For this example, f = 0 and g = 0 but 9 # 0. 
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TABLE I 

Computational Results for Example 1 

- 

Grid Size 2 L -Rate 2 - L -Error 1 - H -Error 1 - H -Rate 1 H -Distance 
o f  Newton 
I t e r a t e s  

A - 

.9623 (-2) 

.3948 (-4) 

.3685 (-11) 
1 /5 .8152 .4399 (-1) 

-1548 (-1) 
.lo89 (-2) 
.7512 (-9) 
,4617 (-12) 

61152 (-1) 1.933 .995 

~~ 

,6792 

.1261 (-1) 
-4167 (-2.) 
.3129 (-7) 
.1316 (-12) 

.3107 (-1) 

.8047 ( -2 )  

.1619 (-1) 

.5575 (-3) 
,9313 (-10) 
.2059 (-11) 

1 
12 
- 1.949 .3412 .993 

.1326 (-1) 
-5662 ( - 4 )  
-9191 (-11) 

1 
7 .2308 (-1 ) .5829 

1 
14 
- 

4 

-1663 (-1) 
.3660 (-3) 
-9326 (-10) 
.2456 (-11) 

.5934 (-2)  1 1.960 .2926 .994 
I 



I 

I 
.2579 (-4) 
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TABLE I 1  

Computational Results f o r  Example 2 

~- 

1 - H -Rate 
2 - L -Rate 2 - L -Error 

e1906 (-3) 

1 - H -Error Grid Size 
(I 

1 H -Distance 
o f  New ton 
I te ra t e s  

- 

.2580 

.6363 (-3) 
-6454 (-9) 
.4083 (-13) 

-- 

.3921 

.5213 (-3) 

.2790 (-9) 

.2353 (-12) 

- 
.2896 
,6659 (-3) 
.7495 (-9) 
,9605 (-13) 

,3028 ( -2)  1/10 .996 .5022 (-4) 1.925 

I 

! 
.1452 (-3) 

I .4345 
.4733 (-3) 
-2282 (-9) 
.1758 (-12) 

.3182 

.6580 (-3) 

.4913 ( - 9 )  

-4241 (-13) 

.4732 
-2477 (-3) 
-1250 (-9) 
.3396 (-12) 

1/12 .3454 ( -4 )  2.072 .2530 (-2)  .992 

I 

1 /7 
_ .  
? '  

.lo10 (-3) .4334 (-2)  

.2158 (-2)  

7 

1/14 1.969 1.006 

* . .  . .  -. . . . ~. . . 



44 
TABLE I11 

Computational Results f o r  Example 3 

~~ 

Grid Size 

1 /5 

1/10 

1/12 

2 - L -Error 

-1804 (-2) 

,4573 (-3) 

~ 

.1259 (-2) 

.3128 (-3) 

2 - L -Rate 

1.98 

2.01 

1 - H -Error 

.5001 (-1) 

.2531 (-1) 

.4244 (-1) 

. a 1 1  (-1) 

1 - H -Rate 

.98 

1.01 

1 
b H -Distance 

o f  Newton 
I t e r a t e s  

- 

.1698 (-1) 
-3498 (-6) 
.1655 (-12) 

.8707 (-2) 

.7857 (-2) 

.2553 (-7) 

.1429 (-11) 

.lo38 (-1) 

.9765 ( -2)  
,1433 (-6) 
.2742 (-12) 

.7452 ( -2)  

.8445 (-2) 

.5028 (-2) 

.6624 (-2) 

.2783 (-7) 

.7931 (-12) 
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